This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

Synthesis, crystal structure, and characterization of dimeric tetraorganodistannoxane and two tricyclohexyltin carboxylates

Adama Moussa Sakho^a; Dafeng Du^a; Wenjie Li^a; Shuangshuang Liu^a; Dongsheng Zhu^a; Lin Xu^a ^a Department of Chemistry, Northeast Normal University, Changchun 130024, P.R. China

First published on: 13 July 2010

To cite this Article Sakho, Adama Moussa , Du, Dafeng , Li, Wenjie , Liu, Shuangshuang , Zhu, Dongsheng and Xu, Lin(2010) 'Synthesis, crystal structure, and characterization of dimeric tetraorganodistannoxane and two tricyclohexyltin carboxylates', Journal of Coordination Chemistry, 63: 13, 2317 — 2327, First published on: 13 July 2010 (iFirst) **To link to this Article: DOI:** 10.1080/00958972.2010.500665

URL: http://dx.doi.org/10.1080/00958972.2010.500665

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis, crystal structure, and characterization of dimeric tetraorganodistannoxane and two tricyclohexyltin carboxylates

ADAMA MOUSSA SAKHO, DAFENG DU, WENJIE LI, SHUANGSHUANG LIU, DONGSHENG ZHU* and LIN XU

Department of Chemistry, Northeast Normal University, Changchun 130024, P.R. China

(Received 4 January 2010; in final form 1 April 2010)

Three diorganotin(IV) series and triorganotin(IV) complexes, $[(C_6H_{11})_2Sn]_4(L_1)_2O_2(OH)_2$ (1), $(C_6H_{11})_3Sn(HL_2)$ (2), and $(C_6H_{11})_3SnL_3$ (3) (where HL₁ is 2-(4-isopropyl benzoyl) benzoic acid, H₂L₂ is phthalic acid and HL₃ is 2-benzoyl benzoic acid), were synthesized and their crystal structures were determined. There are four crystallographically unique Sn centers in the structure of 1, which consists of a Sn₄O₂(OH)₂ ladder unit, and the ladder consists of four tins held together by two μ_3 -oxygens and two μ_2 -oxygens. The supermolecular motif of 1 is a 2-D structure linked by O–H···O hydrogen bonds. The asymmetric unit of 2 contains two crystallographically independent monomers. The supramolecular architecture of 2 is a 2-D layer structure linked by face-to-face π - π interactions between phenyl rings of adjacent L₂ anions. The structure of 3 contains one tricyclohexyltin cation and one L₃ anion. The Sn···O interactions lead the whole structure to a supramolecular chain. Elemental analysis, infrared, and ¹H NMR of 1–3 were investigated and discussed.

Keywords: Organotin; Tetraorganodistannoxane; Synthesis; Crystal structure; Coordination polymer

1. Introduction

Organotin carboxylate derivatives have antitumor activity, rich structural chemistry [1], and wide use as PVC stabilizers, as catalysts, and in polyurethane polymerization [2]. The structural studies of organotin(IV) compounds of carboxylic acids are of growing interest because there are many possible bonding interactions between oxygen of carboxyl and tin. Studies on diorganotin(IV) or triorganotin(IV) compounds of carboxylic acid [3] revealed new structural types which may lead to compounds with different activities. However, dicyclohexyltin and tricyclohexyltin carboxylates have not been reported [4]. We recently reported some organotin compounds with different carboxylates. As the continuation of this investigation, we have now synthesized three organotin carboxylates: $[(C_6H_{11})_2Sn]_4(L_1)_2O_2(OH)_2$ (1), $(C_6H_{11})_3Sn(HL_2)$ (2), and $(C_6H_{11})_3SnL_3$ (3) (HL₁ = 2-(4-isopropyl benzoyl) benzoic acid; H₂L₂ = phthalic acid; HL₃ = 2-benzoyl benzoic acid). The ¹H NMR and FT-IR spectroscopies characterize 1–3.

^{*}Corresponding author. Email: zhuds206@nenu.edu.cn

2. Experimental

2.1. Materials and methods

Phthalic acid (HL₂) was purchased from commercial sources and used without purification; the solvents were purified before use by standard procedures. The melting points were obtained in open capillaries and are uncorrected. Elemental analyses were performed with a Perkin-Elmer PE 2400 CHN instrument and gravimetric analysis was performed for Sn. ¹H NMR spectra were recorded in CDCl₃ on a Varian Mercury 300 MHz spectrometer. Infrared (IR) spectra using KBr pellets were recorded on an Alpha Centauri FI/IR spectrometer (400–4000 cm⁻¹).

X-ray crystallographic data for 1–3 were recorded on a Bruker CCD Area detector image plate diffractometer using the ω/φ scan technique with Mo-K α radiation ($\lambda = 0.71073$ Å). Absorption corrections were applied using multi-scan techniques [5]. The structures were solved by direct methods with SHELXS-97 [4] and refined by fullmatrix least squares with SHELXL-97 [6] within WINGX [7]. All non-hydrogen atoms were refined with anisotropic temperature parameters. Hydrogens were refined as rigid groups. The detailed crystallographic data and structure refinement parameters for 1–3 are summarized in table 1.

2.2. Syntheses

2.2.1. Synthesis of 2-(4-isopropylbenzoyl) acid (HL₁). Phthalic anhydride (5.92 g, 0.04 mol), anhydrous aluminum chloride (10.67 g, 0.08 mol), and dry isopropyl benzene (60 mL) were added to a three-neck flask. The mixture was stirred for 6 h at 50°C and transferred into a beaker. After cooling to room temperature it was hydrolyzed with aqueous HCl (20%) to obtain a white solid which was collected by filtration. The solid was dissolved in 20% aqueous NaOH and the excess solvent was removed by hydrodistillation. The distillate obtained was acidified with 20% HCl and the solid got precipitated. Then the filtrate was washed with water; the solid thus obtained was 63%, m.p. 118–120°C, IR (KBr, cm⁻¹): v_{sym} (COO) 1420, 1569; v_{asym} (COO) 1599, 1614; v(O–H) 3440; ¹H NMR (CDCl₃) δ : 1,24 (d, 6H, –CH₃), 3.05 (m, 1H, –CH), 7.26–8.11. (m, 8H, Ar–H), 11.63 (s, 1H, –COOH). Anal. Calcd for C₁₇H₁₆O₃ (%): C, 76.10; H, 6.01. Found (%): C, 76.03; H, 5.96.

2.2.2. Synthesis of 2-benzoyl benzoic acid (HL₃). HL₃ was prepared by the same procedure as HL₁; in which the mixture of phthalic anhydride (5.92 g, 0.04 mol), anhydrous aluminum chloride (10.67 g, 0.08 mol), and dry benzene (60 mL) gave a pure white powder whose yield was 58%, m.p. 138–140°C, IR (KBr, cm⁻¹): ν_{sym} (COO) 1413, 1555; ν_{as} (COO) 1584, 1606; ν (O–H) 3445; ¹H NMR (CDCl₃) δ : 7.26–8.13 (m, 9H, Ar–H), 11.13 (s, 1H, –COOH). Anal. Calcd for C₁₄H₁₀O₃ (%): C, 74.33; H, 4.46. Found (%): C, 74.26; H, 4.42.

2.2.3. Synthesis of $[(C_6H_{11})_2Sn]_4(L_1)_2O_2(OH)_2]$ (1). A mixture of dicyclohexyltin oxide (0.301 g, 1 mmol) and HL₁ (0.268 g, 1 mmol) in dry benzene (40 mL) was refluxed

	1	2	2
Empirical formula	I CHOSn-	2 C. H. O.Sn	S C.H.O.Sp
Empirical formula	174054	532.25	503 35
$C_{rystal size} (mm^3)$	$0.33 \times 0.24 \times 0.21$	$0.36 \times 0.30 \times 0.28$	$0.32 \times 0.27 \times 0.23$
Crystal system	Monoclinic	Monoclinic	$0.52 \times 0.27 \times 0.25$
Space group	P_2 / m	P_2 / a	D_2 / m
Unit cell dimensions (Å, °)	$r z_1/n$	r_{21}/c	r21/n
a	12.4789(11)	19.1159(11)	13.966(2)
b	17.2594(15)	15.0730(9)	14.399(2)
С	19.6118(17)	17.9044(10)	14.606(2)
β	100.7130(10)	106.1730(10)	93.101(2)
Volume (Å ³), Z	4150.3(6), 2	4954.7(5), 8	2932.8(8), 4
Calculated density $(g cm^{-3})$	1.393	1.427	1.344
Absorption coefficient (mm^{-1})	1.242	1.060	0.900
F(000)	1784	2200	1232
θ range for data collection (°)	1.06-24.67	1.75-26.04	1.99-25.01
Reflections collected	20,527	27,313	14,618
Unique reflections	$13,272 [R_{(int)} = 0.0467]$	9750 $[R_{(int)} = 0.0361]$	$5144 [R_{(int)} = 0.0543]$
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0567,$	$R_1 = 0.0369$,	$R_1 = 0.0476$,
/ -	$wR_2 = 0.1018$	$wR_2 = 0.0812$	$wR_2 = 0.0986$
R indices (all data)	$R_1 = 0.1288$,	$R_1 = 0.0611$,	$R_1 = 0.0975$,
	$wR_2 = 0.1276$	$wR_2 = 0.0913$	$wR_2 = 0.1164$
Goodness-of-fit on F^2	0.980	1.016	1.001
Largest difference peak and hole $(e \text{ Å}^{-3})$	0.493 and -0.413	1.010 and -0.446	0.521 and -0480

Table 1. Crystal data and details of structure refinement parameters for 1-3.

for 8 h in a Dean–Stark separator. After cooling to room temperature, the solvent was gradually removed by evaporation under vacuum until solid product was obtained. The resulting solid was then recrystallized from ethanol/water to give buff crystals of **1**. The yield was 67%, m.p. 188–190°C. IR (KBr, cm⁻¹): ν (C–H) 2935, 2920, 2864; ν (Sn–O–Sn) 482, 422; ν (Sn–C) 541; ν _{sym}(COO) 1376, 1432; ν _{as}(COO) 1588, 1650. ¹H NMR (CDCl₃) δ : 1.23–1.94 (m, 88H, CH₂, SnC₆H₁₁, 12H, –CH₃), 2.04 (s, 2H, Sn–OH–Sn), 3.1 (m, 2H, –CH), 7.15–7.65 (m, 16H, Ph). Anal. Calcd for C₈₂H₁₂₀O₁₀Sn₄ (%): C, 56.58; H, 6.95; Sn, 27.28. Found (%): C, 56.53; H, 6.89; Sn, 27.24.

2.2.4. Synthesis of $(C_6H_{11})_3Sn(HL_2)$ (2). Complex 2 was prepared by the same procedure as 1 in which a mixture of tricyclohexyltin hydroxide (0.385 g, 1 mmol) and phthalic acid (H_2L_2) (0.166 g, 1 mmol) was refluxed for 8 h in a Dean–Stark separator. After cooling to room temperature, the solvent was gradually removed by evaporation under vacuum until solid product was obtained. The resulting solid was then recrystallized from ethanol/water to give buff crystals of 2 in 58% yield, m.p. 170–172°C. IR (KBr, cm⁻¹): ν (Sn–O–Sn) 455, 416; ν (Sn–C) 549; ν_{sym} (COO) 1351, 1443; ν_{as} (COO) 1590, 1663. ¹H NMR (CDCl₃) δ : 1.25–1.96 (m, 33H, CH₂, SnC₆H₁₁), 7.19–7.96 (m, 4H, Ar–H). Anal. Calcd for C₂₆H₃₇O₄Sn (%): C, 58.66; H, 7.01; Sn, 22.30. Found (%): C, 58.57; H, 7.11; Sn, 22.35.

2.2.5. Synthesis of $(C_6H_{11})SnL_3$ (3). Complex 3 was prepared by the same procedure as 1 using a mixture of tricyclohexyltin hydroxide (0.385 g, 1 mmol) and HL₃ (0.226 g, 1 mmol) in 53% yield, m.p. 138–140°C. IR (KBr, cm⁻¹): ν (Sn–O–Sn) 454, 412, ν (Sn–C) 634; ν_{sym} (COO) 1350, 1440; ν_{as} (COO) 1584, 1663. ¹H NMR (CDCl₃) δ : 1.23–1.93 (m, 33H, CH₂, SnC₆H₁₁), 7.26–7.76 (m, 9H, Ar–H). Anal. Calcd for C₃₂H₄₂O₃Sn (%): C, 64.77; H, 7.13; Sn, 20.00. Found (%): C, 64.72; H, 7.07; Sn, 20.08.

3. Results and discussion

3.1. Syntheses

The synthetic procedures are shown in scheme 1.

3.2. IR spectra

In the IR spectra of 1–3, the absence of a broad band at 2500–3550 cm⁻¹, which appears in the spectra of the free ligand as ν (O–H), indicates the formation of metal–ligand bonds. The difference of $\Delta\nu(\nu_{as}(COO) - \nu_{sym}(COO))$ is used to determine the nature of bonding of tin carboxylate complexes [8]. This difference in $\Delta\nu$ between asymmetric and symmetric absorption frequencies below 200 cm⁻¹ indicates that the carboxylate is bidentate, while greater than 200 cm⁻¹ indicates unidentate carboxylate [9]. The $\nu_{as}(COO)$ and $\nu_{sym}(COO)$ vibrations are 1588, 1650 and 1376, 1432 cm⁻¹ for 1; 1590,

Scheme 1. The synthesis procedure of 1-3.

1663 and 1351, 1443 cm⁻¹ for **2**; and 1584, 1663 and 1350, 1440 cm⁻¹ for **3**. The differences of $\Delta[\nu_{as}(COO) - \nu_{sym}(COO)]$ between these frequencies for **1–3** are close to those found for a unidentate carboxylate (218 and 212 cm⁻¹ for **1**; 239 and 220 cm⁻¹ for **2**; and 208 and 223 cm⁻¹ for **3**), which was confirmed by X-ray structural analyses. Bands at 477 and 419 cm⁻¹ are assigned to $\nu(Sn-O-Sn)$, indicating the formation of Sn–O–Sn bridges [9]. The absorption bands at 536, 585, and 549 cm⁻¹ for **1–3** are assigned to $\nu(Sn–C)$ stretching modes [10].

3.3. ¹H NMR spectra

In ¹H NMR spectra of the free ligands, single resonances are observed at 11-12 ppm, which are absent when the carboxylate coordinates with Sn. ¹H NMR of **1**–**3** show a multiplet at 1.23–1.96 ppm due to the cyclohexyl protons, and the protons on the phenyls of **1**–**3** show multiplets at 7.15–7.96 ppm.

3.4. Crystal structures

Detailed crystallographic data and structural refinement parameters for 1-3 are summarized in table 1 with selected bond lengths and angles in table 2.

3.4.1. Structure of $[(Cy_2Sn)_4(L_1)_2)O_2(OH)_2]$. As shown in figure 1, the structure of 1 consists of a Sn₄O₂(OH)₂ ladder unit. Four tin atoms are almost coplanar, with the largest deviation from the Sn₄O₂(OH)₂ ladder plane being 0.0149 Å. Each ladder consists of four tin centers held together by two μ_3 -oxygens. According to their coordination environments, the four tins can be divided into two types. Sn1 and Sn4, bonded to one μ_3 -oxygen, one μ_2 -oxygen, and one oxygen derived from the carboxylate

Table 2. Selected bond lengths (Å) and angles (°) for 1-3.

1 Sn1-O5 Sn2-O2 Sn2-O3	2.171(9) 2.024(8) 2.130(8)	Sn3-O3 Sn3-O2 Sn4-O7	2.070(7) 2.180(8) 2.197(9)
05-Sn1-O1 02-Sn1-C41 02-Sn1-C51 C41-Sn1-C51 01-Sn2-O3 02-Sn2-C61 02 Sn2-C71	155.4(3) 113.4(6) 112.6(6) 131.8(8) 147.7(3) 122.9(5)	O4-Sn3-O2 O3-Sn3-C81 O3-Sn3-C91 C81-Sn3-C91 O7-Sn4-O4 O3-Sn4-C101 O3-Sn4-C101	146.4(3) 118.2(5) 121.4(6) 120.5(7) 155.1(3) 117.7(5)
C61–Sn2–C71	115.5(6) 121.6(7)	C101–Sn4–C111 C101–Sn4–C111	130.4(7)
Sn1-C41 Sn2-C71	2.149(3) 2.162(3)	Sn1–O1 Sn2–O7 ^{#3}	2.479(2) 2.284(2)
O3–Sn1–O1	171.74(8)	O7 ^{#3} -Sn2-O5	171.60(9)
5 Sn1–O1 Sn1–C41	2.132(4) 2.144(5)	Sn1-C31	2.150(7)
O1-Sn1-C31	93.0(3)	O2C1O1	123.2(6)

Symmetry code: #3 x, -y + 5/2, z + 1/2.

Figure 1. A view of the molecular structure of 1 showing the atomic numbering scheme. Hydrogen atoms have been omitted for clarity.

HL₁, can be regarded as type 1; Sn2 and Sn3, bonded to two μ_3 -oxygens and one μ_3 -oxygen, can be regarded as type 2. All of the tin atoms are five-coordinate with two cyclohexyl groups and three oxygens, resulting in a *cis*-(C₆H₁₁)₂SnO₃ trigonal–bipyramidal coordination environment with two cyclohexyl groups and one oxygen in equatorial positions. The angle range of O–Sn–O is 146.4(3)–155.4(3)°, deviating considerably from 180°, which indicates that the structure is distorted. For Sn1, the trigonal plane is defined by C41, C51, and O2 with axial positions occupied by O5 and O1; the trigonal plane for Sn2 is defined by C61, C71, and O2 with axial positions occupied by O3 and O1. For Sn3, C81, C91, and O3 are equatorial and O4 and O2 are axial. For Sn4, C111, C101, and O3 are equatorial and O7 and O4 are axial. Each exocyclic Sn is also coordinated by monodentate carboxylate Sn1–O5=2.171(9) Å.

Complex 1 displays a ladder-type structure that is analogous to the structure of symmetric distannoxanes [11]. The central cyclic four-membered Sn_2O_2 core of 1 is linked to two terminal Cy₂Sn entities through μ_3 -oxos O2 and O3, and Sn–O bond lengths are Sn2-O2 = 2.024(8) Å; Sn3-O2 = 2.180(8) Å; Sn2-O3 = 2.130(8) Å; and Sn3-O2 = 2.130(8) Å; Sn3-O3 = 2.130(8) Å; $O_3 = 2.070(7)$ Å. The four tin centers are held together by μ_3 O2 and O3. Sn2 and Sn3 are each bonded to two μ_3 -oxos and one μ_2 -oxo. Sn1 and Sn4 are each bonded to one μ_3 -oxo and one μ_2 -oxo, and are asymmetrically bridged by HL₁ through O5 and O7. The central Sn_2O_2 core is linked to the two outer Sn_2O_2 rings resulting in a ladder-type structure as shown in figures 1 and 2. The two oxygens of the central cyclic unit are tridentate, linking three Sn atoms (two endocyclic and one exocyclic). O6 and O8 of the carboxylate have weak interactions with Sn; the bond lengths of $Sn1 \cdots O6$ (2.988 Å) and $Sn4 \cdots O8$ (3.090 Å) are less than the sum of the Van der Waals radii (3.58 Å) [12] (figure 3). Weak $O-H\cdots O$ interactions exist between hydroxy hydrogen and carboxylate oxygen $(O(1)-H(1)\cdots O(10)\#1$ of 2.06Å and $O(4)-H(4)\cdots O(9)\#2$ of 2.35 Å). These interactions lead 1 to form a 2-D supramolecular framework (figure 4). Detailed $O-H \cdots O$ hydrogen bond parameters are listed in table 3.

Figure 2. Repeating fragment ladder-type structure in the polymeric layer of **1**. For clarity, only the first carbons of the cyclohexyl linked to Sn are shown.

Figure 3. Repeating unit of 1, including $Sn \cdots O$ interactions shown by orange dotted lines. Selected bond distances: $[Sn1 \cdots O6 = 2.988 \text{ Å} \text{ and } Sn4 \cdots O8 = 3.090 \text{ Å}].$

3.4.2. Molecular and crystal structure of 2. The structure of 2 (figure 5) contains two independent units with similar conformations and only small differences in bond lengths and angles (table 2). Each unit contains two different carboxylates, one L₂ anion and one benzoic anion. The tins form distorted *trans*-O₂SnC₃ trigonal bipyramidal with three cyclohexyl groups in the equatorial plane [13]. Sn–C distances lie in the range 2.149(3)–2.162(3) Å and Sn–O bond lengths involving carboxyl oxygen are 2.284(2)–2.479(2) Å [Sn1–O1 = 2.479(2) Å; Sn1–O3 = 2.242(2) Å; Sn2–O5 = 2.339(2) Å; and Sn2–O7#3 = 2.284(2) Å]. Weak distortion angle observed can be attributed to the presence of steric interactions by three cyclohexyl groups, giving angles of O3–Sn1–O1 and O7#3–Sn2–O5 [171.74(8)° and 171.60(9)°, respectively]. The carboxylate oxygens of L₂ anions and benzoic anions are monodentate. Tricyclohexyltin groups are linked

Figure 4. The 2-D network connected by intermolecular $O-H\cdots O$ interactions. The hydrogen atoms (except H1 and H4) and cyclohexyl groups have been omitted for clarity.

Table 3. Hydrogen bonds for 1.

$O(1)-H(1)\cdots O(10)\#1$ 0.75 2.06 2.922(12) 169	$\cdot A(\circ)$
	.8
$O(4)-H(4)\cdots O(9)\#2$ 0.76 2.35 2.809(13) 13.	.7

#1: -x + 1, y - 1/2, -z - 1; #2: -x + 1, y + 1/2, -z.

to $L_2 via$ O3 for Sn1, O5 for Sn2; and are linked to benzoic anions via O1 for Sn1, O7#3 for Sn2. As shown in figure 5, the L_2 anions link Sn1 and Sn2 tricyclohexyltin groups to two polymeric chains. Face-to-face π - π interactions between the phenyl rings of adjacent L_2 anions are observed with a face-to-face distance of 3.612 Å (figure 6). The supramolecular architecture of **2** is a 2-D layer structure.

3.4.3. Molecular and crystal structures of **3**. The structure of **3** contains one tricyclohexyltin cation and one L_3 anion (figure 7). The tin has distorted tetrahedral geometry with bond angles of 93.0(3)° to 123.2(6)°, the carboxylate oxygen of L_3 coordinates monodentate to tin giving a Sn1–O1 distance of 2.132(4) Å. The Sn–C bond lengths are in the range 2.144(5) to 2.150(7) Å, within the normal literature values [14].

Figure 5. Repeating motif of the two independent structures of 2.

Figure 6. The 2-D supramolecular network of 2 formed by $\pi - \pi$ stacking interactions shown by blue dotted lines. Cyclohexyl groups have been omitted for clarity.

Figure 7. Molecule structure of **3** showing atomic numbering scheme. Hydrogen atoms have been omitted for clarity.

Figure 8. Polymeric chain of 3 formed by intramolecular weak $O \rightarrow Sn$ interactions.

The Sn \cdots O interaction between O2 and Sn1 (at a distance of 2.867 Å) was smaller than the sum of Van der Waals radii 3.73 Å [15]. The structure of **3** is one of the two major motifs for R'CO₂SnR₃ [16]. Intermolecular Sn \cdots O interactions exist between Sn1 and O3 at 3.060 Å. These Sn \cdots O interactions lead the whole structure to a supramolecular chain, as shown in figure 8.

Supplementary material

CCDC-769210, 769211, and 769212 contain supplementary crystallographic data for **1–3**. The data can be obtained free of charge from the Cambridge Crystallographic Data Center *via* www.ccdc.cam.ac.uk/data–request.cif.

Acknowledgments

We acknowledge the support from Postdoctoral Science Foundation, P.R. China (No. 2005038561).

References

- (a) M. Gielen. Appl. Organomet. Chem., 16, 481 (2002); (b) E.R.T. Tiekink. Trends Organomet. Chem., 1, 71 (1994).
- [2] (a) P.J. Smith, *Chemistry of Tin*, 2nd Edn, Blackie Academic and Professional, London, England (1998);
 (b) T.P. Lockhart. *Organometallics*, 7, 1438 (1988);
 (c) J. Meunier-Piret, M. Boualam, R. Willem, M. Gielen. *Main Group Met. Chem.*, 16, 329 (1993).
- [3] (a) C.L. Ma, Y.W. Han, R.F. Zhang. J. Coord. Chem., 61, 1200 (2008); (b) X.Y. Zhang, H.B. Song, Q.S. Li, X.F. Liu, L.F. Tang. Polyhedron, 26, 3743 (2007); (c) M. Nath, P.K. Sainly, G. Engz, X.Q. Song. J. Coord. Chem., 62, 3629 (2009); (d) V. Chandrasekhar, R. Thirumoorthi. Organometallics, 28, 2096 (2009); (e) R. Knighton, X.Q. Song, R. Pike, A.C.D. Dios, L. Casabianca, G. Eng. J. Coord. Chem., 62, 3110 (2009).
- [4] (a) L.J. Tian, X.J. Liu, Z.C. Shang, D.X. Li, Q.S. Yu. Appl. Organomet. Chem., 18, 483 (2004);
 (b) S.W. Ng. Main Group Met. Chem., 19, 113 (1996); (c) S.G. Teoh, D.S. Tan, G.Y. Yeap, H.K. Fun. J. Coord. Chem., 48, 53 (1999); (d) D.R. Smyth, C.P.D. Stapleton, E.R.T. Tiekink. Organometallics, 22, 4599 (2003).
- [5] G.M. Sheldrick. SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Göttingen, Germany (1996).
- [6] G.M. Sheldrick. SHELXS-97, A Program for Automatic Solution of Crystal Structure, University of Gottingen, Göttingen, Germany (1997).
- [7] L.J. Farrugia. WINGX, A Windows-based Program for Crystal Structure Analysis, University of Glasgow, Glasgow, UK (1988).
- [8] B.Y.K. Ho, J.J. Zuckerman. J. Inorg. Chem., 12, 1552 (1973).
- [9] (a) B.Y.K. Ho, J.J. Zuckerman. Inorg. Chem., 12, 2253 (1973); (b) K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th Edn, Wiley, New York (1980).
- [10] J.A. Zubita, J.J. Zuckerman. Inorg. Chem., 251, 24 (1987).
- [11] (a) G.K. Sandhu, R. Gupta, S.S. Sandhu, R.V. Parish, K. Brown. J. Organomet. Chem., 279, 373 (1985);
 (b) R. Murugavel, N. Gogoi. J. Organomet. Chem., 693, 3111 (2008); (c) E.R.T. Tiekink, G.K. Sandhu, S.P. Verma. Acta Crystallogr., Sect. C, 45, 1810 (1989).
- [12] R.F. Zhang, J.F. Sun, C.I. Ma. J. Organomet. Chem., 690, 4366 (2005).
- [13] (a) A. Kalsoom, M. Mazhar, S. Ali, M.F. Mahon, K.C. Molloy, M.I. Chaudhary. Appl. Organomet. Chem., 11, 47 (1997); (b) Imtiaz-ud-Din, K.C. Molloy, M. Mazhar, S. Dastgir, S. Ali, M.F. Mahon. Appl. Organomet. Chem., 17, 781 (2003).
- [14] T.S. Basu Baul, S.M. Pyke, K.K. Saima, E.R.T. Tiekink. Main Group Met. Chem., 19, 807 (1996).
- [15] S. Hu, C. Zhou, Q. Cai. Acta Phys. Chim. Sin., 19, 1073 (2003).
- [16] (a) R. Willem, A. Bouhdid, B. Mahieu. J. Organomet. Chem., 531, 151 (1997); (b) G. Eng, X. Song, A. Zapata, A.C. de Dios, L. Casabinaca, R.D. Pike. J. Organomet. Chem., 692, 1398 (2007).